
NASA-CR-Ig0640

m

r

Supporting Multiple Domains
ina

.........Single Reuse Repository

,,t"
t_

eq _ o

N u
c _4

z _ o

E

_ O4_
_.. ul

- Z-J 0v
_C_4J
I--Z _ C

L.. O.

OE

=-d rO 0

OZ _ b-4
o

" 0_0 _O

I o_ _C_
_uO C

Z_uJ Oeo
•,.... :_IE c_ t.j _,1

e,4

David Eichmann
West Virginia University Research Corporation

............. 611192

\/O<';.:/J-_ o/J

I161o c_

Cooperative Agreement NCC 9-16

Research Activity No. SE.43

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

© ©

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

=

_ TECHNICAL REPORT

m

m

. 4

i

The RICIS Concept

The University of Houston-Clear Lake established the Research institute for

Computing and Information Systems (RICIS} in 1986 to encourage the NASA
Johnson Space Center (JSC) and local Industry to actively support research

in the computing and informaUon sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated
program of research in advanced data processing technology needed for JSC's
main missions, including administrative, engineering and science responsl-

bflities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two InsUtutions to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in compuUng and information systems to
serve the needs of the government, Industry, community and academia.
RICIS combines resources of UHCL and Its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission Is being

Implemented through interdisciplinary Involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-

Uonal sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M U_versity to help
oversee _CIS research an_ education programs, while other research

organ_aUons are involved _a the "gateway" concepL

A major role of _cIs then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and _ffonna-

tion _nces. _CIS, wor_ngJointly with Its sponsors, ad_ses on research
needs, _commends pHnci_s for conducOng _e _search, pro_des tech-
nical and administraUve suppo_ to coordinate _e research and in_gra_s
technical resulm into _e goals of UHCL. NASA/JSC and indus_y.

m

i

_ _

m

m

m

i

W

m

= £
I

L

L =

m

Supporting Multiple Domains
ina

Single Reuse Repository

L_

w

hL

I

U

W

m

m

I

m

Ii

UB

m

W

IB

I

W

im

U

U

m

J

Im

iff

m

J

m
i

Iw

II

w.
RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. David Eichmann of West Virginia

University. Dr. E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Ernest M. Fridge, III of the Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

= ,

= :

m

r_

=_

n

U

m

qw

m

Iw

m

I

m

m
E
U

m

mmm
ID

m

J

m

g

mm
m

i
J

_m

mD

II

lql

i

W

U

n

w

SoRReL
West Virginia University
Software Reuse Repository Lab

Department of Statistics and Computer Science

West Virginia University

Morgantown, WV26506

(304) 293-3607 email: sorrel@cs.wvu.wvnet.edu

lw.

Supporting Multiple Domains in a Single Reuse Repository

David Eichmann

June 1, 1992

w

w

w

qw

z

_P

mm
m
II

I

m

i

m

wl

ID

m

g

m
i

m

tB

m

g

ii

J

II

wm

ID

Supporting Multiple Domains in a Single Reuse Repository

t==

D.
w

z
w

w

David Eichmann"

SoRReL Group
Dept. of Statistics and Computer Science

West Virginia University
Morgantown, WV 26506

eichmann@cs.wvu.wvnet.edu

Abstract: Domain analysis typically results in the construction of a domain-
specific repository. Such a repository imposes artificial boundaries on the shar-
ing of similar assets between related domains. A lattice,-based approach to re-
pository modeling can preserve a reuser's domain specific view of the reposi-

tory, while avoiding replication of commonly used assets and supporting a more
general perspective on domain interrelationships.

Keywords: domain analysis, software reuse, faceted classification, type lattices,
record subtyping, repository views

1. Introduction

There is an emerging consensus on the importance of domain analysis in the success of a

software reuse program [9]. We f'md it particularly significant that the construction of domain-

specific repositories is a natural consequence of domain-specific analysis of various software

system assets. These domain-specific repositories provide yet another guise for the NIH (not-

invented-here) syndrome, and hence fail to capitalize on possible reuse scenarios that lie in re-

lated, but distinct domains.

We propose here that repositories should not be domain-specific, but rather that a particular

view of the repository should be domain-specific, and that this view should be user-adjustable.

We use our lattice-based approach to classification [4] to demonstrate how this can be accom-

plished. Section 2 briefly reviews issues in domain analysis, faceted classification, and the con-

cepts of typing and lattices. Section 3 reviews our lattice-based repository model, followed by a

demonstration of domain-specific support in section 4. The paper closes with a discussion and

suggestions for future work with section 5.

* This work was supported in part by NASA under cooperative agreement NCC-9-16, and in part by
MountainNet, Inc.

u

w

2. Background

Our work draws its motivation equally from the areas of domain analysis and type theory.

Recent advances in the application of type lattices to database models and knowledge represen-

tation provide an excellent formal framework for repository structure.

2.1. Domain Analysis

"Domain analysis is the process of identifying and organizing knowledge

about some class of problems -- the problem domain -- to support the descrip-

tion and solution of those problems." [1]

The interest in domain analysis reflects its importance to the effective population and use of

reuse repositories. There are substantial arguments in faVor-of the:_ne-_dcove_ge of a par-

ticular software system problem domain, rather than a grab--bag approach to populating the re-

pository. Reusers frustrated with gaps in the coverage of the repository frequently fail to return

to the repository. We refer the reader to the excellent collection edited by Prieto-Diaz and

Arango for a deeper presentation of domain analysis [9].

However, we do have reservations concerning the exclusiveness of domain-specific reposi-

tories. Particular classes of assets are best considered domain-independent _ or perhaps more

aptly _ useful in a broad class of domains; the most obvious asset class of this nature is that of

the simple abstract data types. These "trans--domain" assets effectively form their own domain,

which numerous, more restrictive domains draw upon for representational infrastructure. Do-

main analysts are thereby presented a dilemma, to replicate the trans-domain assets into the do-

main-specific repositories (along with the inherent maintenance headaches), or to factor the

trans--domain assets into their own domain _ resulting in a multi--domain environment. The

work presented here attempts to resolve this dile_a.
.... r

2._, Fa_.ceted Classification

Faceted classification begins by using domain analysis to identify and examine a collection

of work perceived to be related [12]. This process relies on a library notion known as literary

IIw

m

m

m ¸

m

m
m

m

m

m

m

lw

m

m

m

m
m

m

III

J

z

W

I

m

g
i

warrant, where a classifier collects a representative sample of rifles which are to be classified,

and extracts descriptive terms to serve as a grouping mechanism for the rifles. From this process,

the classifier not only derives terms for grouping but also identifies a vocabulary that serves as

values within the groups. A facet then is the encapsulation of a set of related concepts, ex-

pressed in the vocabulary of the domain.

--7

w--

W

=

W

From the software perspective, the groupings or facets become a taxonomy for the software.

Using Literary Warrant, Prieto-Diaz and Freeman identified six facets that can be used as a tax-

onomy [10]: Function, Object, Medium, System Type, Functional Area and Setting. Every

software component is classified by assigning a value for each facet for that component. For ex-

ample, a software component in a Relational Database Management System that parses expres-

sions might be classified with the tuple

(parse, expression, stack, interpreter, DBMS,).

Thus, the Function facet value for this component is "parse", the Object facet value is "expres-

sion", etc. Note that no value has been assigned for the Setting facet as this software component

does not seem to have an appropriate value for the Setting facet. The taxonomy formed is "fiat"

in that there is no nesting of facets within facets, as is the case with other popular classification

schemes (e.g., the Dewey decimal system, the ACM Computing Reviews system, etc.).

2.3. Lattices

Our principle concept for structuring the repository is a lattice. Lattices handily support in-

stances that are pairwise incomparable (e.g., a tuple characterizing a design document and a

tuple characterizing a conference paper), but that are both comparable to some third instance

(e.g., the more general notion of a document, which is an upper bound in lattice terminology).

The remainder of this section provides a brief review of lattice theory, section 3 presents the ap-

plication of lattices to faceted classification.

-3-

w

2_.4. Subtyoes and Inheritance

The object classes in an object-oriented system are organized into a partial ordering. Object

classes (subtypes) inherit attributes and methods from their ancestors (supertypes) in the order-

ing. Single inheritance schemes restrict a given object class to at most one immediate ancestor

in the partial ordering. Multiple inheritance schemes allow a given object class to have any

number of immediate ancestors in the partial ordering. CardeUi formalized some of the seman-

tics of multiple inheritance in [2].

Conformance allows one type instance to be treated as if it were an instance of another type

[8]. Any type a conforms to any type b if the subtype relation holds between a and b, i.e., a -_ b.

In a limited sense, this is what happens with inheritance, but conformance is more general. In-

heritance requires that this treatment only be allowed when moving up the type hierarchy or lat-

tice. Inheritance uses a partial ordering of types (by subtype), plus an implicit def'miti0n of exis-

tence dependencies between a given type and its ancestors. Conformance can hold for arbitrary

types, independent of any type ordering scheme. Such a notion is dearly superior to inheritance

based upon hierarchies or lattices for type-related query languages, where intermediate results

(derived from existing types, but not part of the database schema) need to be manipulated.

Our classification scheme requires the notion of subtype to be defined between instances of

facet set types and between instances of record types. Let a be a facet set type containing m fac-

et instances and b be a facet set type containing n instances. Then a is a subtype of b, written a -_

b, if for each bi in b (1 < i < n), b_ is also in a. Similarly, letR = {i, : t,, L : t.} be a record type

containing n components and S = {i, : t',, i. : t'} be a record type containing m components, 1 <

m < n (we can reorder component entries as necessary). Then R is a subtype of S, written R -_ S, if

for each i_, (1 < j < m), tj -_ t'j.

3. Lattice-Based Faceted Classification

Inheritance-based systems are, in some sense, navigational. A user querying an object-ori-

ented database must be aware of the inheritance structure of that specific database, just as a user

-4-

m

lip

I
m

I

l

I

u

m

[W

i

I

I

I

m
i
I
I

I

m

I

L_

I
I

I

I

u

I

L •

querying a network database must be aware of database structure. Because of their non-naviga-

tional characteristics, conformance-based models promise to gain prominence over inheritance-

based models, just as relational models have over network models. Our approach uses confor-

mance to identify components using their position in a type lattice. One particularly useful con-

sequence of this choice is the ability to dynamically evolve the repository structure, adding new

vertices to the lattice as analysts examine new domains.

m

m

$. 1. The Tyoe Lattice

Figure 1 shows the general structure of the reuse type lattice. At the top is T, the special

universal type. Any value conforms to the universal type. At the bottom is ±, the void type.

These two special types ensure that any two types in the lattice have both an upper bound and a

lower bound. Between the universal and void types appear the upper and lower bounds for the

two type constructors facet and tuple. Facet0 characterizes the notion of the empty facet type; it

contains no values, but is still a facet. Likewise, Facet characterizes the notion of the set of all

possible facet values. The dotted line between them indicates that an arbitrary number of types

may appear here in the lattice. For example, figure 2 shows the sublattice for facet sets for the

examples in section 2.2.

w

_r

The tuple sublattice has a similar structure. At the top is the empty tuple type { }, character-

izing a tuple with no facets. At the bottom is tuple, the tuple type with all possible facets.

T

Facet0 { }
!

!

!

!

!

!

Fable

1

Figure 1. The reuse type lattice

-5-

Traditional retrieval of individual facet values relies upon maximal conjunction of boolean

terms for retrieval of matches on all facets and maximal disjunction of boolean terms for

matches on any facet of an expression. In order to fit the notion of facet into the type lattice, we

look at sets of facets. A set of facets corresponds to a conjunction on all of the facets comprising

the set. Each set occupies a unique position in the type lattice. We handle disjunction by allow-

ing a given component to occupy multiple lattice positions. Matching occurs on any of the posi-

tions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation

within the type system to a particular facet value. Values are bound to some semantic concept in

the problem domain.

The subset relation is our partial order for facets. The least value of this portion of the lattice

is the set of all facet values from all facets in the problem domain, denoted by the distinguished

name Facot. The greatest value of thls portion of the lance is the empty set, denoted by the dis-

tinguished name Facet0. The union operator generates the greatest lower bound. The intersec-

tion operator generates the least upper bound.

!

Ilw

!

i

m

!

1IF

m

m

m

W

m

z

m
m

l

i

m

m

m
J

Function0

Function

Facet0

Medium0 SystemTypeo FunctionalAreao Setting0Otiee_

Obect Medium SystemType FunctionalArea Setting

Facet

Figure 2. A Sublattice of Facet Sets

-6-

m

Ill

Z
_ll

-!
m
m

J

!

L

= ,

M

v

m

m

,.===

u

v

3.2. The Inf0r0nce Rules

A formal mechanism for the specification of the query semantics is clearly of use. In this

case, type inference directly applies to the problem. We begin with a brief remark concerning

notation. In the inference rules that follow, the symbol A represents an existing set of assump-

tions. A always contains the type information generated by the database schema which imple-

ments the repository. It is occasionally necessary to extend the set of assumptions with some

additional information. A. x denotes the set of assumptions extended with the fact x. A t- x

states that given a set of assumptions A, x can be inferred. Inferences above the horizontal line

act as premises for the conclusions, the inferences below the horizontal line. An expression is

well-typed if a type for the expression can be deduced using the available inference rules, other-

wise it is ill-typed. We give in this section only a minimal set inference rules to provide a flavor

of the complete set, which may be found in [3, 4].

3.2.1. Domain Interval Subtyping

Typically, a subtype is "smaller" than its supertype, for example, the range of employee ages

is a subtype of the integers. Here the reverse is true, a subtype is a larger collection of values

than its supertyp¢ - some entry containing at least all the facet values of interest is thereby an

instance of a subtype of the query instance's type.

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a

base type. Rule (1) extends subtyping to domain intervals, where each subinterval in the sub-

A I- t(mt...nt) __ t(mt'...nt')

A _- t(_...r_)--<t(mL..rO (1)

A _" t(mt...nt ml...ni) -< t(ml'...nl', m{...n{)

type is a subtype of some interval in the supertype. Assume that t is a base type ordered by <

(the ordering may be arbitrary). A domain that is (inclusively) delimited by two values, a and b,

is denoted tO...b). Intervals made up of more than a single continuous value range are denoted by

a set of ranges, for example, t<,...b.,...,t o denotes the interval that includes the subinterval a

through b inclusive, the subinterval c through d inclusive, and the singleton value e. The single-

-7-

w

ton range e is equivalent to e...e. When we use such notation we intend that a < b and c < d, but

not necessarily that b < c or d < e. An empty pair of brackets, to, denotes an empty interval, i.e.,

one which contains no elements. In our particular application, the base types are finite sets of

enumeration (facet) values.

3.2.2. Tuplo Subtyping

This collection of inference rules explicitly types the tuples that classify components. The

unlabelled record attributes used by Prieto-Diaz in tuples can be ambiguous when a given facet

value is used in more than one domain. Rather than require that facet values be distinct across

facets, we view a tuple r to be of type record, {i_ : t_..... i, : t,}. Type tj for attribute i; must be a

facet type. The empty tuple (i.e., the tuple containing no facets) is of type {}, the tuple type with

no components• The order in which components appear is arbitrary, since attribute name is used

to distinguish facets.

Rule (2) characterizes record subtyping, handling situations where a component of the sub-

AI- l_<m<n

A I- t'l -<t t (2)

A I- t'm -_tm

• ' ' tn} -< ira tm}At- {il tl im:tm in: {il:tl :

type is a subtype of the corresponding component in the supertype.

J

mini

n

lira

w
-=

IIW

m

n

=

4. Modeling Multiple Domains in a Single Repository

Thereposito modelpresen in 3iswell'suitedtosuppomngmultiple

simultaneously,while allowing for the appearance of dom_n-specificity where necessary. Our

model further supports the notion of a complete life cycle repository, as many of the issues ap-

plicable for component assets from multiple domains apply equally well to the characterization

of life cycle assets.

4.1 Domain An_,lyFi$ and Reoositow Structure

Consider the effect of domain analyses on the definition of the resulting repositories. If we

assume that each domain analysis is carried out in isolation (in order to focus solely upon the

-8-

B

w

m

F

Ull

=

m

m

W

II

v

Y

W

requirements of that particular domain), it naturally follows that the collection of facets used to

characterize that domain (and the values that make up each of those facets) will also be inde-

pendent. Realistically though, no domain is totally independent from all others, and there will

be facets (or subsets of facet values) that two related domains will have in common.

A maximal upper bound for a domain is the distinguished vertex in the lattice that contains

exactly those facets used in classifying the domain, but that contains no facet values. A maximal

lower bound for a domain is that distinguished vertex in the lattice that contains exactly those

facets used in classifying the domain, and for each of those facets, the n--tuple contains all values

used by that facet. All instances in the domain fail somewhere between the maximal lower

bound and the maximal upper bound for that domain. There are three possible relationships be-

tween domains in the unified lattice.

First, domains that share one or more complete facets, but differ by at least one facet, have

facet n-tuples that are siblings in the lattice. Their only commonality is the n-tuple correspond-

ing to the least upper bound of the two n-tuples involved; i.e., neither is a subtype of the other,

but they do share a common supertype. By inference rule (2), this is the n-tuple comprised ex-

actly of those facets which the two domains share. Domain interval subtyping does not come

into play, since all facet instances contain all values in their respective facets.

Next, domains that share the same set of facets, but only partially share facet values for one

or more facets, and differ by at least one facet value in some facet, are likewise siblings in the

lattice. They share a single maximal upper bound, since they are classified by the same facets,

and they have a greatest lower bound that is comprised of the union of each of the respective

facet value sets.

w

Finally, domains that share some, but not all, facets, but only partially share facet values for

one or more facets, are likewise siblings in the lattice. Both this and the second relationship be-

w

-9-

m

tween domains require inference rule (2), plus the entire set of inference rules for domain inter-

val subtyping.

g

i

It

4,2 Sublattices as Reoository Views

Reusers wishing to focus on a specific domain in our model need only concentrate on the

sublattice defined by the maximal upper and lower bounds for that domain. Restricting queries

to mentioning only those facets present in those n-tuples effectively reduces the repository data

model to a flat tuple space in the tradition of Prieto-Diaz. The restriction is easily accomplished

by providing repository views similar in nature to the relational definition of a view.

ill

m

i

m

m

A repository view is defined by a p_ of n-tuples: the fh-st-characterizing theupper extent of

the lattice that the view may reference, and the second characterizing the lower extent of the lat-

dee that the view may reference. By varying the placement of these view extents in the lattice, a

variety of repository structures may be presented to the reuser. The upper extent specifies those

facets which the user query must specify, and the lower extent specifies those facets which the

user query may specify. Defining multiple repository views supports the presentation of arbi-

trary domains in a single composite view.

The most general example of this is an upper extent of { } and a lower extent of tuple opens

the entire repository to the reuser.

!11

m

m

U

m

m

Um

m

gum

g

An upper extent of the maximal upper bound for a domain and a lower extent of the maximal

lower bound for that same domain restricts the reuser to specifying at most and at least those fac-

ets used in classifying that particular domain, i.e., a flat tuple space with a slight variation (sets

of facet values may be specified, but need not be).

An upper extent comprised of two empty facets and a lower extent of tuple supports the no-

tion of a multiple inheritance structure rooted at those two facets and including any vertex that

includes at least those facets,

- 10-

m
m

D

mw

R

E

u

m

U

m

m
w

Specifying a lower extent with a facet containing only a subset of the complete facet restricts

reusers employing that view from accessing any asset not classified using values from that sub-

set.

r_

4.3 Re0ository Synorgy

As mentioned previously, few domains are truly independent from all others. A domain-

specific repository with good coverage of that domain must necessarily duplicate at some level

assets that are very similar to, if not duplicates of, assets found in repositories for closely related

domains. Repositories supporting a collection of related domains avoid this unneeded replica-

tion of assets.

Many of the assets comprising these repositories will be adaptable to a variety of domains

beyond the one for which they were initially designed. This synergy of assets promises a deeper

understanding of the software process, but an understanding more difficult to achieve with the

artificial boundaries of domains impeding aeeess. Presenting a seamless integration of a diverse

universe of assets is critical to the success of software reuse.

m

m

If the user interface for the reuse system supports the possibility of multiple repository back-

ends, each specific to a given domain, it is possible to avoid asset replication. However, this im-

plies cooperation between repository administrators that may not be convenient, or even feasi-

ble. In a mature reuse industry, repositories will be geographically distributed and span work

groups, organizations, and even industries. Here again, seamless integration of multiple reposi-

tories is important, and not readily handled by a fiat, static classification structure.

4.4 The Relationshi D tO Life Cycle Assets and Granularity

As we previously mentioned, we are interested in a complete life cycle repository model, in-

cluding requirements assets, design assets, and so on, as well as the traditional component assets.

Granularity issues are particularly interesting in such a model, as reusers attempt to track par-

ticular concepts through requirements and design and on into maintenance.

-11-

Such a data model adds facets particular to a specific life cycle phase, or particular to a spe-

cific level ol / granul-a]'ity, just as independent domain analysis adds facets to a particular dorn_]n.

In effect, the resulting repository model contains three dimensions: domain, life cycle phase, and

granularity. The def'mition of facet values and the corresponding set of lattice vertices handles

domains and life cycle phases. Multiple vertex instances handle granularity issues under our

current approach.

5. Conclusions and Future Work

We described here an approach unifying the specificity of domain-specific repositories with

the flexibility of domain-independent repositorieg. The primary drawback we see in Prieto-

Diaz' approach to classification is the flamess and homogeneity of the classification structure. A

general reuse system might have not only reusable components, but also design documents, for-

mal specifications, and perhaps vendor production information, to name a few possibilities, and

have all of these things for multiple problem domains. Prieto--Diaz' scheme creates a single

tuple space for all entries, resulting in numerous facets, tuples with many "not/applicable" en-

tries for those facets, and frequent wildearding in user queries. Our model supports precise char-

acterization of assets, and lattice--based queries may be as restrictive or as broad as necessary to

suit a reuser's needs.

1IF

!

E
I

lID

Ul

!

m

m

J

!

m

m

J

E
W

!

I

Conceptual closeness is a very appealing concept in our framework, but offers its own col-

lection of difficulties, particularly the establishment of distances for terms in a given domain,

and the resolution of conflicting distances for terms occurring in multiple domains. We are cur-

rently exploring the use of neural networks to support adaptive distances, based upon user esti-

mations of the relevance of query matches to the intended semantics. An early report on this

work appears in [5]_

Related to conceptual closeness is the idea of conceptual neighborhoods around n-tuples.

Conceptual closeness addresses the semantic distance between two facet values, while concep-

tual neighborhoods address the semantic distance between two n-tuples in the lattice. The re-

z

W

J

D

Ill

n

J

-12-
I

L-

r_

w

pository model described here is one mechanism for constructing a conceptual neighborhood,

based upon subtype relationships. We plan to consider alternative neighborhood definition

mechanisms, including composing distances for n-tuples from the distances for facet values in-

volved in those n-tuples. We are also considering the inclusion of signatures [7] and semantics

[6, 11] into the repository model to improve query effectiveness.

References

[1] Arango, G. and R. 1Meto-Diaz, "Part 1: Introduction and Overview - Domain Analysis

Concepts and Research Directions," Domain Analysis and Software Systems Modeling,

Prieto-Diaz, R. and G. Mango (eds.), IEEE Computer Society, Los Alamitos, CA, 1991,

pages 9-32.

[2] Cardelli, L., "A Semantics of Multiple Inheritance," in Semantics of Data Types (Pro-

ceedings International Symposium Sophia-Antipolos, France, June 1984), Springer-Ver-

lag, Lecture Notes in Computer Science, vol. 173, pages 51--68.

[3] Eichmann, D., Polymorphic Extensions to the Relational Model, Ph.D. dissertation, The

University of Iowa, Iowa City, IA, August 1989. Also available as technical report

89-05.

[4] Eichmann, D. A. and J. Atldns, "Design of a Lattice-Based Faceted Classification Sys-

tem," Second International Conference on Software Engineering and Knowledge Engi-

neering, Skokie, IL, June 21-23, 1990, pages 90-97.

[5] Eichmann, D. A. and K. Srinivas, "Neural Network-Based Retrieval from Reuse Reposi-

tories," CHI'91 Workshop on Pattern Recognition and Neural Networks in Human-Com-

puter Interaction, New Orleans, LA, April 28, 1991.

[6] Eichmann, D. A., "Selecting Reusable Components Using Algebraic Specifications,"

Second International Conference on Algebraic Methodology and Software Technology.

Iowa City, IA, May 22-25, 1991, pages 37-40.

-13-

W

[7]

[8]

[9]

[10]

[11]

[12]

Eichmann, D. A., "A Hybrid Approach to Software Repository Retrieval: Blending Fac-

eted Classification and Type Signatures," Third International Conference on Software

Engineering and Knowledge Engineering, Skokie, IL, June 27-29, 1991, pages 236-240.

Horn, C., "Conformance, Genericity, Inheritance and Enhancement," ECOOP'87 - Proc.

European Conference on ObjeCtSOriented Programming, Pads, France, June 15-17,

1987, pages 223-233.

Pfieto-Diaz, R. and G. Arango (eds.), Domain Analysis and Software Systems Modeling,

IEEE Computer Society, Los Alamitos, CA, 1991.

Prieto-Diaz, R. and P. Freeman, "Classifying Software for Reusability," IEEE Software,

vol. 4, no. 1, January, 1987, pages 6-16.

Steigerwald, R., Luqi, and J. McDowell, "A CASE Tool for Reusable Software Compo-

nent Storage and Retrieval in Rapid Prototyping;' Third International Conference on

Software Engineering and Knowledge Engineering, Skolde, IL, June 27-29, 1991, pages

34-39.

Vickery, B. C., Faceted Classification Schemes, vol. 5, Rutgers Series on Systems for the

Intellectual Organization of Information, S. Artandi (ed.), Rutgers University Press, New

Brunswick, NJ, 1966.

Q

!

II

m
i
g

!

lid

!

IQW

IB

I

D

m

!

w

I

lip

D

J

I

J

- 14-

m

W

